

The Metanet

Technical summary

A Blockchain-based Internet

The Metanet

Page i
© nChain Limited.

Copyright
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

The names of actual companies and products mentioned in this document may be trademarks of

their respective owners.

nChain Limited. accepts no responsibility or liability for any errors or inaccuracies that may appear

in this documentation.

http://creativecommons.org/licenses/by-sa/4.0/

The Metanet

Page ii
© nChain Limited.

Contents

1 Introduction ... 3

2 The Metanet protocol ... 4

2.1 Node and edge structure ... 5

2.2 Domains, naming and locating ... 8

2.3 Searching the Metanet ... 10

2.4 Data insertion ... 13

2.4.1 Using OP_RETURN alone ... 13

2.4.2 Using OP_RETURN and OP_DROP ... 14

2.4.3 Using multiple transactions .. 15

2.5 The Metanet and the Internet ... 16

3 References .. 17

The Metanet

Page 3
© nChain Limited.

1 Introduction

We propose a new protocol for a distributed peer internet - the Metanet - that uses an underlying

blockchain to store data in a directed graph structure that can be easily searched and accessed by

a browser. The protocol is designed not only to replicate much of the functionality of the internet but

also to leverage many additional advantages associated with blockchain technology. It is a layer-2

solution that does not require any changes to the protocol or consensus rules of the underlying

blockchain.

The Metanet protocol allows for the creation of a directed graph for data and content that is not

necessarily related to payments themselves. In this specification, any internet-like or other content

data is to be considered a part of the Metanet, as these data and their related uses are beyond the

simple payment use case of the Blockchain.

In summary, we propose the structuring of transactions to be interpreted as Metanet nodes, and

using digital signatures to create edges as links between them. This allows a graph to be

reconstructed off-chain, by anybody, using on-chain data and a standardised protocol.

This graph then allows on-chain data to be usefully related, handled and distributed by network peers

in an internet-like model where trust is decentralised, transparency increased, and data integrity,

authenticity and validity secured by the Blockchain and proof-of-work mining.

The Metanet

Page 4
© nChain Limited.

2 The Metanet protocol

The Metanet is a layer-2 protocol, designed such that any data can be stored immutably on a

blockchain in a searchable and flexible manner. This is achieved primarily by structuring all Metanet

data in a directed graph, governed by public key addresses.

The data involved in the Metanet protocol can be broadly categorised as:

I. The Metanet flag – a 4-byte umbrella prefix to be used in every Metanet transaction. This flag

signifies that a transaction is to be considered a part of the Metanet graph. All other related sub-

protocols can be encompassed by the Metanet flag.

II. Attributes – any relevant and useful metadata relating to content data. This can include

indexing, permissioning and encoding information about given content data.

III. Content – the payload data of interest. This may consist of files, web-pages, links and any

such content data may be raw, compressed or encrypted as needed.

The specific methods for inserting and structuring content and attribute data can be flexible and

adapted to different sub-protocols and use cases. However, the common thread that defines the

Metanet is that all insertion methods are made consistent with the node and edge structure specified

in the over-arching Metanet protocol.

The Metanet

Page 5
© nChain Limited.

2.1 Node and edge structure

We will now detail the protocol for structuring Metanet transactions that allows for addressing,

permissions, and version control. The structure of this distributed peer internet is analogous to the

existing internet.

The aim of this directed graph structure is to

(i) Associate related content in different transactions;

(ii) Allow users to find content using human-readable keyword searches; and

(iii) Build server-like structures within a blockchain.

Our approach is to structure data associated with the Metanet as a directed graph. The nodes and

edges of the Metanet graph correspond to

Node - A transaction associated with the Metanet protocol.

A node stores content. A node is created by including an OP_RETURN that is immediately

followed by <Metanet Flag>.

Each node is assigned a public key 𝑃𝑛𝑜𝑑𝑒, also in OP_RETURN. The combination of this public

key and transaction ID uniquely specify the index 𝐼𝐷𝑛𝑜𝑑𝑒 : = 𝐻(𝑃𝑛𝑜𝑑𝑒||𝑇𝑥𝐼𝐷𝑛𝑜𝑑𝑒) of a Metanet

node.

Edge - An association of a child node with a parent node.

An edge is created only when a signature 𝑆𝑖𝑔 𝑃𝑝𝑎𝑟𝑒𝑛𝑡 appears in the input of a Metanet

transaction, and therefore only a parent can give permission to create an edge. All nodes may

have at most one parent, and a parent node may have an arbitrary number of children1.

It should be emphasised that creating an edge between two nodes is the creation of a logical link

between them, and does not necessarily mean one spending an output of the other. This allows

the creation of edges to remain as flexible as possible over time.

A valid Metanet node (with parent) is given by a transaction of the following form:

Figure 1. A Metanet node transaction.

1 In the language of graph theory, the indegree of each node is at most 1, and the outdegree of
each node is arbitrary.

𝑇𝑥𝐼𝐷𝑛𝑜𝑑𝑒

Inputs Outputs

 < 𝑆𝑖𝑔 𝑃𝑝𝑎𝑟𝑒𝑛𝑡> <𝑃𝑝𝑎𝑟𝑒𝑛𝑡>

OP_RETURN <Metanet Flag> <𝑃𝑛𝑜𝑑𝑒> <𝑇𝑥𝐼𝐷𝑝𝑎𝑟𝑒𝑛𝑡>

The Metanet

Page 6
© nChain Limited.

This transaction contains all the information needed to specify the index of the node and its parent

𝐼𝐷𝑛𝑜𝑑𝑒 = 𝐻(𝑃𝑛𝑜𝑑𝑒||𝑇𝑥𝐼𝐷𝑛𝑜𝑑𝑒) , 𝐼𝐷𝑝𝑎𝑟𝑒𝑛𝑡 = 𝐻(𝑃𝑝𝑎𝑟𝑒𝑛𝑡||𝑇𝑥𝐼𝐷𝑝𝑎𝑟𝑒𝑛𝑡) .

Moreover, since the signature of the parent node is required, only a parent can create an edge to a

child. This is a fundamental design element of the Metanet protocol, which intentionally facilitates

more complex permissioning and addressing of content.

If the <𝑇𝑥𝐼𝐷𝑝𝑎𝑟𝑒𝑛𝑡> field is not present in a node, or it does not point to a valid Metanet transaction,

then the node is considered an orphan.

Additional attributes may be added to each node. These may include flags, names and keywords.

We will discuss this in a following subsection.

We have seen how the index of a node can be broken down into

a) Public Key 𝑃𝑛𝑜𝑑𝑒, which we interpret as the address of the node; and

b) Transaction ID 𝑇𝑥𝐼𝐷𝑛𝑜𝑑𝑒 , which we interpret as the version of the node.

There are two interesting features that emerge.

1. Version control - If there are two nodes with the same public key, then we interpret the node

with transaction ID with greatest proof of work as the latest version of that node.

If the nodes are in different blocks, then this can be checked with the block height. For

transactions in the same block, this is determined by the Topological Transaction Ordering Rule

(TTOR).

2. Permissioning - A child of a node can only be created if the owner of the public key 𝑃𝑛𝑜𝑑𝑒 signs

the transaction input in the creation of a child node. Therefore 𝑃𝑛𝑜𝑑𝑒 not only represents the

address of a node but also the permission to create a child node. This is analogous to a standard

bitcoin transaction – a public key is not only an address but also the permission associated with

that address.

Note that since the signature of the parent node appears in a UXTO unlocking script it is validated

through the standard miner validation process at the point when the transaction is accepted to

the network. This means that the permission to create a child node is validated by the bitcoin

network itself.

It is worth noting that standard Internet Protocol (IP) addresses are unique only within a network at

a certain point in time. On the other hand, the index of a node in the Metanet is unique for all time

and there is no notion of separate networks, which allows data to be permanently anchored to a

single object 𝐼𝐷𝑛𝑜𝑑𝑒.

The node and edge structure allow us to visualise the Metanet as a graph (overleaf). This graph

can be reconstructed off-chain by anybody with access to the relevant on-chain data.

The Metanet

Page 7
© nChain Limited.

P0

 TxID0

P1

 TxID1

P2

 TxID2

P2

 TxID 2

P1,1

 TxID1,1

P1,2

 TxID1,2

P1,1,1

 TxID1,1,1

P1,1,2

 TxID1,1,2

Pnode

 TxIDnode

Pnode

 TxIDnode

Current node
version

Old node
version

Current edge Old edge Meta-Domain

Domain: P0

Domain: P1

Domain: P1,1

Figure 2. The Metanet graph structure.

The Metanet

Page 8
© nChain Limited.

2.2 Domains, naming and locating

The hierarchy of the Metanet graph allows a domain-like structure to emerge. We interpret an orphan

node as a top-level domain , a child of an orphan node as a sub-domain, a grandchild as a sub-sub-

domain etc., and a childless node as an end-point. See figure 2 above. Each top-level domain in the

Metanet may be thought of as a tree with the root being the orphan node and the leaves being the

childless nodes. The Metanet itself is a global collection of trees which form a graph.

The Metanet protocol does not stipulate that any node contains content data, but leaf (childless)

nodes represent the end of a directed path on the data tree, and thus will be used generally to store

content data. However, content may be stored at any node in the tree. Protocol-specific flags,

included in nodes as attributes, may be used to specify the role of nodes in a data tree (disk space,

folders, files or permissioning changes).

Recall that the internet uses the Domain Name System (DNS) to associate human-readable names

to Internet Protocol (IP) addresses. The DNS is in a sense decentralised, although in practice it is

controlled by a small number of key players, such as governments and large corporations.

Depending on your DNS provider the same name may take you to different addresses. This issue is

inherent when mapping short human-readable names to computer generated numbers.

Let us assume that an equivalent distributed system exists that maps a human-readable top-level

domain name to the decentralised index 𝐼𝐷𝑟𝑜𝑜𝑡 of a root node. In other words, there exists a 1-1

function 𝜅 that maps human-readable names to Metanet root node indexes, for example

𝜅(′𝑏𝑜𝑏𝑠𝑏𝑙𝑜𝑔′) = 𝐼𝐷𝑏𝑜𝑏𝑠𝑏𝑙𝑜𝑔 (= 𝐻(𝑃𝑏𝑜𝑏𝑠𝑏𝑙𝑜𝑔||𝑇𝑥𝐼𝐷𝑏𝑜𝑏𝑠𝑏𝑙𝑜𝑔)) .

The input to the left-hand-side is human-readable word, whereas the output on the right-hand-side

is a hash digest, which will typically be a 256-bit data structure. Note that 𝑃𝑏𝑜𝑏𝑠𝑏𝑙𝑜𝑔 and 𝑇𝑥𝐼𝐷𝑏𝑜𝑏𝑠𝑏𝑙𝑜𝑔

are also not human readable in general. In the standard IP protocol this would be a map from

𝑤𝑤𝑤. 𝑏𝑜𝑏𝑠𝑏𝑙𝑜𝑔. 𝑐𝑜𝑚 to the IP address of the corresponding domain within the network.

The map 𝜅 should be interpreted as a measure to ensure backwards-compatibility of the Metanet

with the internet in replicating the human-readability of DNS-issued domain names, but the naming

and addressing scheme that provides the directed graph structure of the Metanet is not explicitly

dependent on this map.

Possible existing forms of the mapping function 𝜅 include the DNSLink2 system employed by IPFS

or the OpenNIC service [2] but in general these sacrifice some element of decentralisation [3] in

order to provide a map that is 1-1.

The purpose of this naming system is for a user to be able to identify a top-level domain in the

Metanet by a memorable word (for example a company name) rather than a hash digest. This will

also make searching for the domain faster as it is quicker to search for a keyword rather than a hash

digest.

2 This mapping can be stored in an existing TXT record as part of the DNS. This is similar to a
DNSLink in the Interplanetary File System (IPFS) [1].

The Metanet

Page 9
© nChain Limited.

Vanity addresses

The public key used as the address of a Metanet node is not generally a human-readable object.

However, it is possible to create human-recognisable public key addresses – vanity addresses 𝑃𝑣𝑎𝑛𝑖𝑡𝑦

– which include a plaintext prefix that can be interpreted directly by a user.

An example of a vanity address with a desirable prefix is

𝑃𝑏𝑜𝑏𝑠𝑏𝑙𝑜𝑔: bobsblogHtKNngkdXEeobR76b53LETtpyT

Prefix: bobsblog

Suffix: HtKNngkdXEeobR76b53LETtpyT

The combination of a chosen address 𝑃𝑣𝑎𝑛𝑖𝑡𝑦 with a 𝑇𝑥𝐼𝐷 that together form 𝐼𝐷𝑛𝑜𝑑𝑒 is also beneficial

as it means there is no central issuer of domain names (𝑇𝑥𝐼𝐷s are generated by decentralised proof-

of-work) and the names are recoverable from the blockchain itself. There are no longer the points of

failure that exist within the internet DNS.

Since Metanet domains already come with a permissions system (the public key) there is no need

to issue a certificate to prove ownership. The use of a blockchain for this purpose has already been

explored in namecoin [4] for example. In our case we do not need a separate blockchain for this as

we are doing everything within one blockchain.

Locating resources

Given that we have a map from a domain name to a node index we can build up a resource locator

similar to that of a Uniform Resource Locator (URL) for the internet. We will call this a Metanet URL

(MURL), and takes the form

MURL = 'mnp:' +′//domain name′+ ′/path′ + ′/file′ .

Each of the components of a URL – protocol, domain name, path and file – have been mapped to

the structure of a MURL, making the object more user-intuitive and integrable with the existing

structure of the internet.

This assumes that each node has a ‘name’ associated with its public key (address) that is unique at

the level within the domain tree. This name is always the right-most component of the MURL for a

given node, analogous to the name of a particular file in a directory. If two nodes at the same level

in the tree have the same name, then they will have the same public key and so the latest version

(according to 𝑇𝑥𝐼𝐷) is taken.

It is envisaged that many protocols may be developed for locating on-chain resources, such as the

‘b://’ and ‘c://’ protocols already in use. In the same way that the <Metanet Flag> is an umbrella

protocol flag for all on-chain Metanet data, it is envisaged that a generalised resource location

protocol ‘mnp://’ for the Metanet can be used as an umbrella locator by linking domain names to node

identifiers 𝐼𝐷𝑛𝑜𝑑𝑒.

This means, if we are able to associate an entity with an 𝐼𝐷𝑛𝑜𝑑𝑒, then we can construct MURLs to

locate resources simply by following a path down a Metanet tree of nodes associated with the root

𝐼𝐷𝑛𝑜𝑑𝑒. This concept is generalised to support more sophisticated content-addressing or 𝑇𝑥𝐼𝐷-

addressing as resource locators that can resolve such queries based on a node ID.

The Metanet

Page 10
© nChain Limited.

2.3 Searching the Metanet

We have defined our Metanet graph structure such that each node has a unique index 𝐼𝐷𝑛𝑜𝑑𝑒 and

may also have a name attributed to it. This allows for content to be located using a MURL. In order

to also enable quick search functionality, we allow for additional keywords to be attributed to a node.

The fixed attributes of a node are the index (𝐼𝐷𝑛𝑜𝑑𝑒) and index of parent node (𝐼𝐷𝑝𝑎𝑟𝑒𝑛𝑡), each

comprising two fields (𝑃, 𝑇𝑥𝐼𝐷), and the optional attributes can include the name and keywords.

Node attributes:

{

 index: 𝐻(𝑃𝑛𝑜𝑑𝑒||𝑇𝑥𝐼𝐷𝑛𝑜𝑑𝑒);

 index of parent: 𝐻(𝑃𝑝𝑎𝑟𝑒𝑛𝑡||𝑇𝑥𝐼𝐷𝑝𝑎𝑟𝑒𝑛𝑡); (NULL if orphan)

 name: ‘bobsblog’;

 kwd1: ‘travel’;

 kwd2: ‘barbados’;

 ⋮

}

A practical method to search the Metanet is to first use a block explorer to trawl through the

blockchain and identify all transactions with the Metanet flag, check that they are valid Metanet

nodes, and if so record their indexes and keyword in a database. This database can then be used to

efficiently search for nodes with desired keywords. Once the index of the node(s) with the desired

keywords is found its content can be retrieved from the block explorer and viewed.

By way of example, consider the 𝑃1 branch of figure 3, where the nodes corresponding to public keys

𝑃0, 𝑃1 and 𝑃1,1 represent a home page, topic page and sub-topic page respectively. These nodes are

given the names ‘bobsblog’, ‘summer’ and ‘caribbean’, and their attributes are shown below.

Home page node 𝑷𝟎

MURL: mnp://bobsblog

{

 index: 𝐻(𝑃0||𝑇𝑥𝐼𝐷0);

 index of parent: 𝑁𝑈𝐿𝐿

 name: ‘bobsblog’;

 kwd1: ‘travel’;

 kwd2: ‘barbados’;

 ⋮

}

Topic page node 𝑷𝟏

MURL: mnp://bobsblog/summer

{

 index: 𝐻(𝑃1||𝑇𝑥𝐼𝐷1);

 index of parent: 𝐻(𝑃0||𝑇𝑥𝐼𝐷0);

 name: ‘summer’;

 kwd1: ‘travel’;

 kwd2: ‘barbados’;

 ⋮

}

The Metanet

Page 11
© nChain Limited.

Sub-topic page node 𝑷𝟏,𝟏

MURL: mnp://bobsblog/summer/caribbean

{

 index: 𝐻(𝑃1,1||𝑇𝑥𝐼𝐷1,1);

 index of parent: 𝐻(𝑃1||𝑇𝑥𝐼𝐷1);

 name: ‘caribbean’;

 kwd1: ‘travel’;

 kwd2: ‘barbados’;

 ⋮

}

In this example the leaf nodes 𝑃1,1,1, 𝑃1,1,2 and 𝑃1,1,3 are given the names ‘beaches’, ‘nightlife’ and

‘food’ respectively and are used to store separate blog posts. The full domain structure is shown on

the diagram overleaf (figure 3), including the MURL search path pertaining to each node in the tree.

We note that the Metanet can also incorporate a content addressable network (CAN) by storing a

hash of the content stored by a node transaction as an additional attribute. This means Metanet

nodes may also be indexed and searched for by content hash.

The Metanet

Page 12
© nChain Limited.

Figure 3. A Metanet graph tree for the domain ‘bobsblog’ including MURL search paths.

P0

 TxID0

P1

 TxID1

P1,1

 TxID1,1

P1,1,1

 TxID1,1,1

P1,1,3
TxID 1,1,3

P1,1,2

 TxID1,1,2

Pnode

 TxIDnode

Node

Edge of
branch P1

Edge of other
branch(es)

MURL

mnp://bobsblog/

mnp://bobsblog/summer

mnp://bobsblog/summer/caribbean

mnp://bobsblog/summer/caribbean/beaches

mnp://bobsblog/summer/caribbean/nightlife

mnp://bobsblog/summer/caribbean/food

The Metanet

Page 13
© nChain Limited.

2.4 Data insertion

In section 2.1 we alluded to the fact that the Metanet protocol, which gives rise to a directed graph

structure for on-chain content, can support many different methods for inserting data. For instance,

in many cases it will be feasible to store content in a single transaction, but in others it may be

sensible to split data across multiple transactions that are linked using the Metanet protocol.

Additionally, there may be users who wish to upload all their data in OP_RETURN payloads, whereas

others may wish to upload content data in spendable outputs as: <Content> OP_DROP.

As mentioned previously, all these methods are compatible with and supported by the Metanet

protocol, given that the basic form of a Metanet node transaction is employed in all cases.

Recall that the transaction shown in figure 1 specifies the minimum information required in a

transaction for it to be considered part of the Metanet and to be interpretable according to the directed

graph structure. Provided the elements shown in that diagram are present, any method for

embedding the content data and its attributes may be used.

We provide here (non-exhaustively) some examples of how data might be embedded in ways that

are consistent with the Metanet protocol. In what follows, the essential features of the Metanet

protocol are highlighted in blue.

2.4.1 Using OP_RETURN alone

The diagram below shows a Metanet node containing all content data within a single OP_RETURN

output.

Figure 4. A Metanet node using a single OP_RETURN.

The file name and file type are included as optional attributes in the OP_RETURN output, followed

by the actual payload of file data itself.

Any set of attributes and schemas may be included depending on the file type or use case to encode

the relevant metadata, and the file data may be split into several discrete chunks within the output

itself.

𝑇𝑥𝐼𝐷𝑛𝑜𝑑𝑒

Inputs Outputs

< 𝑆𝑖𝑔 𝑃𝑝𝑎𝑟𝑒𝑛𝑡> <𝑃𝑝𝑎𝑟𝑒𝑛𝑡>
OP_RETURN <𝑀𝑒𝑡𝑎𝑛𝑒𝑡 𝐹𝑙𝑎𝑔> <𝑃𝑛𝑜𝑑𝑒> <𝑇𝑥𝐼𝐷𝑝𝑎𝑟𝑒𝑛𝑡>

 <file_name> <file_type>
 <file_data>

The Metanet

Page 14
© nChain Limited.

2.4.2 Using OP_RETURN and OP_DROP

The diagram below shows a Metanet node in which the file data has been split across two spendable

outputs in OP_DROP statements. This insertion method may be used if a large file is to be

embedded, or simply if the user wishes to create fewer provably unspendable outputs.

Figure 5. A Metanet node using an OP_RETURN in conjunction with OP_PUSHDATA.

In this scenario, we have assumed it is sensible to include all the metadata and attributes within the

OP_RETURN output, which then acts as a ‘header’ for the file.

However, it is just as plausible that additional attributes could be included in the spendable outputs

if, for example, there were attributes that applied to <file_data 1> but not <file_data 2>.

Note that we have even included an additional identifier <sub-protocol identifier> to signify the use

of a specific hypothetical data-insertion protocol. We see that the sub-protocol fits within the Metanet

protocol itself, and can be considered an overlay protocol on top of the umbrella protocol that is the

Metanet.

The only condition on the form of this node is still that it adheres to the basic Metanet node transaction

format. This means that the Metanet flag, the node public key 𝑃𝑛𝑜𝑑𝑒 and the parent transaction

identifier 𝑇𝑥𝐼𝐷𝑝𝑎𝑟𝑒𝑛𝑡 appear first in the OP_RETURN output, and that the public key and signature

𝑆𝑖𝑔 𝑃𝑝𝑎𝑟𝑒𝑛𝑡 of the parent node appear in the input.

𝑇𝑥𝐼𝐷𝑛𝑜𝑑𝑒

Inputs Outputs

< 𝑆𝑖𝑔 𝑃𝑝𝑎𝑟𝑒𝑛𝑡> <𝑃𝑝𝑎𝑟𝑒𝑛𝑡>

OP_RETURN <𝑀𝑒𝑡𝑎𝑛𝑒𝑡 𝐹𝑙𝑎𝑔> <𝑃𝑛𝑜𝑑𝑒> <𝑇𝑥𝐼𝐷𝑝𝑎𝑟𝑒𝑛𝑡>

 <sub-protocol identifier>
 <file_name> <file_type>
 <recombination_scheme>

 <file_data 1> OP_DROP

 <file_data 2> OP_DROP

The Metanet

Page 15
© nChain Limited.

2.4.3 Using multiple transactions

It is possible to use any of the previous insertion techniques whilst also splitting data across multiple

transactions, such that the two transactions are related according to the Metanet protocol.

The diagram below shows a pair of child transactions, 𝑇𝑥1 and 𝑇𝑥2, which both have the same parent

according to the Metanet, and are therefore sibling nodes.

Figure 6. A pair of Metanet sibling nodes used to insert a large file split across two transactions.

These two transactions have a common parent, whose signature therefore appears in both their

respective inputs. It is important to remember that this signature does not need to spend an output

of the parent node itself, it simply has to be a valid signature from the parent public key.

In the case where the input of a child does in fact spend an output of its parent, the Metanet edge

created is exactly the same as if the child were to spend an arbitrary output using the parent public

key 𝑃𝑝𝑎𝑟𝑒𝑛𝑡 to sign.

𝑇𝑥𝐼𝐷𝑛𝑜𝑑𝑒 (1)

Input Output

< 𝑆𝑖𝑔 𝑃𝑝𝑎𝑟𝑒𝑛𝑡> <𝑃𝑝𝑎𝑟𝑒𝑛𝑡>

OP_RETURN <𝑀𝑒𝑡𝑎𝑛𝑒𝑡 𝐹𝑙𝑎𝑔> <𝑃𝑛𝑜𝑑𝑒 (1)> <𝑇𝑥𝐼𝐷𝑝𝑎𝑟𝑒𝑛𝑡>

 <sub-protocol identifier>
 <file_name> <file_type> <data_index 1>
 <recombination_scheme>

 <file_data 1> OP_DROP

𝑇𝑥𝐼𝐷𝑛𝑜𝑑𝑒 (2)

Input Output

< 𝑆𝑖𝑔 𝑃𝑝𝑎𝑟𝑒𝑛𝑡> <𝑃𝑝𝑎𝑟𝑒𝑛𝑡>

OP_RETURN <𝑀𝑒𝑡𝑎𝑛𝑒𝑡 𝐹𝑙𝑎𝑔> <𝑃𝑛𝑜𝑑𝑒 (2)> <𝑇𝑥𝐼𝐷𝑝𝑎𝑟𝑒𝑛𝑡>

 <sub-protocol identifier>
 <file_name> <file_type> <data_index 2>
 <recombination_scheme>

 <file_data 2> OP_DROP

The Metanet

Page 16
© nChain Limited.

2.5 The Metanet and the Internet

The Metanet is a protocol for structuring on-chain content data in a way that facilitates the use of

the Blockchain as the base-layer for a distributed peer internet.

The following table gives an analogy between the Metanet protocol and the Internet Protocol:

Table 1. Summary of the analogies between the Internet and Metanet Protocols.

The principle here is to ensure the Metanet can provide at least the same functionalities as the

existing internet, in addition to the inherent benefits and new use cases that come from the blockchain

that underlies the Metanet.

Internet Metanet

Website/file Node

Owner
Public Key
𝑃𝑛𝑜𝑑𝑒

IP Address (non-unique)
Node index (unique)
𝐼𝐷𝑛𝑜𝑑𝑒 = 𝐻(𝑃𝑛𝑜𝑑𝑒||𝑇𝑥𝐼𝐷𝑛𝑜𝑑𝑒)

Domain structure Node tree structure

Domain Name System Map from root node name to node index

URL
http://www.bobsblog.com/path/file

MURL
mnp://bobsblog/path/file

The Metanet

Page 17
© nChain Limited.

3 References

Number Reference

[1] "IPFS Documentation", Docs.ipfs.io, 2019. [Online]. Available:
https://docs.ipfs.io/guides/concepts/dnslink/. [Accessed: 22- May- 2019].

[2] "OpenNIC Project", Opennic.org, 2019. [Online]. Available: https://www.opennic.org/.
[Accessed: 22- May- 2019].

[3] "Ten terrible attempts to make the Inter Planetary File System human-friendly", Hacker Noon,
2019. [Online]. Available: https://hackernoon.com/ten-terrible-attempts-to-make-the-inter-
planetary-file-system-human-friendly-e4e95df0c6fa. [Accessed: 22- May- 2019].

[4] "Namecoin", Namecoin.org, 2019. [Online]. Available: https://namecoin.org/. [Accessed: 22-
May- 2019].

